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Care should be taken in consistency of engineering units. For 
example, if F is in m3/h, then V must be in m3 and ts in hours. 
Note that the result excludes f. Whatever disturbance is made 
to the inlet flow, one scan interval later, the controller will do 
the same to the outlet flow. With a proportional-only controller 
there will be an offset from the level setpoint. It will be negli-
gibly small but, if required, integral action can be included. To 
determine this, we first calculate the vessel time constant (T). 
This is defined as the time taken, with no controller in place, 
for the level to reach the maximum deviation (d) when the inlet 
flow is changed by f. This is given by

For tight level control, we choose a small value for d, say 1%. 
Empirically, setting the integral time (Ti) to 8T gives good 
control. We must again be careful with units. Depending on 
the control system, T (and hence Ti) should be in minutes or 
seconds. Because we have included integral action, we must 
slightly reduce the proportional action. Again, empirically, 
setting Kc to 0.8Kmax works well. Only in unusual circumstances 
(that we’ll cover in the next issue) does level control benefit 
from derivative action. Full controller tuning is therefore

Unlike most controllers, the tuning of tight level control is 
particularly sensitive to the scan interval. For example, if the 
current system scan interval is one second and is increased to 
two seconds, the gain of all tight level controllers should be 
halved.

There are other factors that might limit the maximum 
gain the controller will support – most notably noise. It may 
be necessary to reduce Kc to avoid excessive control valve 
movement.

AVERAGING CONTROL
We take much the same approach to designing an averaging 
level controller, starting with a proportional-only controller. 

I
N THE previous article we showed how to determine 
the parameters necessary to calculate level controller 
tuning. These are:

V = working volume of the vessel
d  = maximum acceptable deviation from  

 setpoint (40% in our example)
f  = normally expected flow disturbance
F  = flow when the level controller output is 100%
ts  = level controller scan interval

We now need to determine the values for controller gain (Kc), 
integral time (Ti) and derivative time (Td).

TIGHT CONTROL
To design the controller to deliver tight control, we start with 
a proportional-only controller – where E is the deviation from 
setpoint (the error) and M the controller output.

Assuming that the process before the flow disturbance is at 
steady state, then En-1 will be zero. After the disturbance, the 
error (in dimensionless form) is given by the change in liquid 
volume as a fraction of the working volume.

For the level to stop moving, the controller must adjust the 
outlet flow by the same amount as the inlet flow. Again, in 
dimensionless form

For tight control, we design the level controller to correct the 
imbalance in the shortest possible time. This is at the end of the 
first scan interval, so the maximum controller gain is given by
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Figure 1: Averaging level control

But this time we design the controller to operate as slowly as 
possible. We define the minimum controller gain (Kmin) as that 
which will leave an offset of d. In other words, the level will 
move to the nearest alarm limit and stay there. By doing so, 
we use all the available surge capacity. Clearly not a practical 
controller, we will later add integral action to bring the level 
slowly back to setpoint.

As in the tight control case, the averaging controller must 
match the outlet flow to any change in inlet flow. But, unlike 
the tight controller, this takes place slowly – involving a large 
number of controller scans.

We apply the same empirical method, as we did for tight 
control, to give full controller tuning as

Figure 1 shows how this controller responds. In this example, 
avoiding the alarm at 90%, it takes around 30 minutes for the 
downstream flow to reach its new value, as opposed to the 
few seconds taken with tight control. This will substantially 
improve the stability of any downstream unit. It does, however, 
require that the level be away from its setpoint for over an 
hour; it is this that the process operator might find difficult 
to accept. 

Note that, unlike tight control, this tuning is unaffected by 

controller scan interval. It does, however, depend on the value 
chosen for f. Of course, not all flow disturbances will be the 
same size; we’ll address this issue next.

Less common these days due to digital control systems, the 
value calculated for Ti may exceed the maximum permitted. 
Remembering Ti is the denominator, this is telling us that the 
controller is close to being proportional-only. Indeed, such a 
controller will work well, but the permanent offset can make 
operator acceptance difficult. To ensure the maximum devia-
tion is never violated

ERROR-SQUARED
The error-squared algorithm is available in most control 
systems. As its name suggests. the PID algorithm uses the 
square of the error; actually, it uses E|E| because we need to 
retain the sign. Remembering that the controller works in a 
dimensionless form, error is ranged -1 to +1, or -100% to +100%. 
Squaring the error doesn’t affect these ranges but it does intro-
duce non-linearity. For example, the result of squaring 10% is 
1%. This means that the controller will hardly respond to this 
error, whereas its response to an error of 100% is unaffected.

There are many versions of the error-squared algorithm but 
the most common, instead of squaring each individual error 
in the control equation, multiplies the controller gain by |E|. 
The effective controller gain is now proportional to the error, 
reducing to zero as the error reduces to zero.

This algorithm offers no advantage for tight level control but 
is tuned for averaging level control using the same approach as 
that for the linear version. Full tuning then becomes

To understand the advantage of this algorithm, we must 
explore how it and the linear version handle disturbances that 
are different from the design. Figure 2 shows, for both control-
lers, the effect of a disturbance 25% larger and 25% smaller 
than f. Disturbances larger than design are handled better with 
less time spent violating the alarm at 90%. Those smaller are 
also handled better, in that more of the surge capacity is used. 
The algorithm is adaptive; it is adapting to the size of the error.

However, error-squaring has a disadvantage. As Figure 3 
shows, it exhibits oscillatory behaviour as the level approaches 
setpoint. This is because the effective controller gain falls 
to zero; small deviations are largely left unchecked until 
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Figure 2: Comparison for non-design disturbances they become significant. The effect on the manipulated flow 
is minor and has little impact on the stability of the down-
stream process. However, it makes persuading a sceptical 
process operator to accept averaging control more difficult. 
The solution lies in the way in which control system vendors 
offer the algorithm. Foxboro, for example, adds a parameter (C) 
to the conventional PID algorithm.

Setting C to 0 gives the original PID algorithm. Setting it to 1 
gives error-squared. But intermediate values are permitted. By 
choosing a value of 0.95, we get the adaptive benefit of error-
squared but without the problem of the controller gain falling 
to zero as the level approaches setpoint. The calculation of 
controller gain then changes to

Honeywell takes a similar approach.

Setting C to 1 and Kn to 0 gives the linear PID; setting C to 0 and 
Kn to 1 gives the error-squared version. However, while Kn can 
have any value, intermediate values for C are not permitted. 
So, if we want 95% error-squared behaviour, we set C to 1 and 
choose C * as 0.95.
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Figure 3: Comparison between error-squared and linear
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Figure 4: Use of gap controller

GAP CONTROL
Another algorithm commonly available in control systems is 
the gap controller. In its basic form we define gaps either side of 
the setpoint. If the level is within these gaps, no control action 
is taken. We have created a deadband in which the control-
ler gain is zero. To fully utilise surge capacity, the gaps, like 
the alarms, should be equidistant either side of the setpoint. 
The algorithm can be tuned to deliver effective averaging 
control but exhibits oscillatory behaviour similar to the error-
squared algorithm. But, instead of a sinusoidal wave, it has 
a sawtooth shape – with amplitude equal to the deadband. 
While it still provides effective level control, it is likely to be 
even less acceptable to the operator. The solution, as before, 
is to avoid the controller gain falling to zero by configuring a 
small gain, (Kc)gap, to be used with the gap. However, in many 
circumstances, it offers no advantage over the error-squared 
algorithm.

Its value is in a situation where flow disturbances are 
consistently small for most of the time but include the 
occasional spike. This might be caused by some relatively 
infrequent, but substantial change in the operation. Typically, 
this is associated with routine switching of equipment such as 
driers or reactors. With the algorithms we’ve covered so far, 
we would have to design for the worst disturbance and accept 
that, for most of the time, we will underutilise surge capacity. 
Gap control offers a better solution. The principle is to design 
the controller using two values for f (f1 for the smaller frequent 
disturbances and f2 for the large infrequent disturbance). The 
smaller disturbances are dealt with by keeping the level within 
the gap; larger ones use the remaining capacity. Typically, we 
choose the gap (G) to be around 75% of the maximum devi-
ation (d). The calculation of integral time is unchanged; the 
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controller gains are given by

In some control systems, the gain used within the gap is 
configured as a multiplier (Kr) applied to Kc. This is given by

RearrangingRearranging

As a rule of thumb, we would expect Kr to be around 0.1 and so 
G is determined as

Figure 4 shows its performance. The alarms are set at 10 and 
90%, with the SP at 50%, so d is 40%. From the increases made 
to the manipulated flow (dashed lines) we can see that f2 is 40 
(from 50 to 90), while f1 is 10 (from 50 to 60) – so G was set 
to 30%. For the larger disturbance, the level (solid line) stays 
within the 90% alarm limit. Despite being a quarter of the 
size, the smaller disturbance uses three-quarters of the surge 
capacity, with the level peaking at 80%. 

NEXT ISSUE
While these tuning calculations will work well on most 
vessels, controller performance can be poor if there is a 
highly non-linear relationship between volume and level. In 
the next article we’ll show how level instrumentation should 
be designed to avoid this. And, for vessels already in service, 
we’ll show how to modify the controller to accommodate 
non-linearity.

We’ll also cover level controllers that show deadtime or 
lag, showing how they should be tuned. And we extend the 
approach to cover all integrating processes.

Myke King CEng FIChemE is director of Whitehouse Consulting, an 
independent advisor covering all aspects of process control. The 
topics featured in this series are covered in greater detail in his book 
Process Control – A Practical Approach, published by Wiley in 2016

Disclaimer: This article is provided for guidance alone. Expert 
engineering advice should be sought before application.
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